You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
4.0 KiB
84 lines
4.0 KiB
6 months ago
|
from fastapi import Body
|
||
|
from fastapi.responses import StreamingResponse
|
||
|
from configs import LLM_MODELS, TEMPERATURE, SAVE_CHAT_HISTORY
|
||
|
from server.utils import wrap_done, get_ChatOpenAI
|
||
|
from langchain.chains import LLMChain
|
||
|
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||
|
from typing import AsyncIterable
|
||
|
import asyncio
|
||
|
import json
|
||
|
from langchain.prompts.chat import ChatPromptTemplate
|
||
|
from typing import List, Optional
|
||
|
from server.chat.utils import History
|
||
|
from server.utils import get_prompt_template
|
||
|
from server.db.repository import add_chat_history_to_db, update_chat_history
|
||
|
|
||
|
|
||
|
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
|
||
|
history: List[History] = Body([],
|
||
|
description="历史对话",
|
||
|
examples=[[
|
||
|
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
|
||
|
{"role": "assistant", "content": "虎头虎脑"}]]
|
||
|
),
|
||
|
stream: bool = Body(False, description="流式输出"),
|
||
|
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
|
||
|
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
||
|
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||
|
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
|
||
|
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
|
||
|
):
|
||
|
history = [History.from_data(h) for h in history]
|
||
|
|
||
|
async def chat_iterator(query: str,
|
||
|
history: List[History] = [],
|
||
|
model_name: str = LLM_MODELS[0],
|
||
|
prompt_name: str = prompt_name,
|
||
|
) -> AsyncIterable[str]:
|
||
|
callback = AsyncIteratorCallbackHandler()
|
||
|
model = get_ChatOpenAI(
|
||
|
model_name=model_name,
|
||
|
temperature=temperature,
|
||
|
max_tokens=max_tokens,
|
||
|
callbacks=[callback],
|
||
|
)
|
||
|
|
||
|
prompt_template = get_prompt_template("llm_chat", prompt_name)
|
||
|
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
|
||
|
chat_prompt = ChatPromptTemplate.from_messages(
|
||
|
[i.to_msg_template() for i in history] + [input_msg])
|
||
|
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||
|
|
||
|
# Begin a task that runs in the background.
|
||
|
task = asyncio.create_task(wrap_done(
|
||
|
chain.acall({"input": query}),
|
||
|
callback.done),
|
||
|
)
|
||
|
|
||
|
answer = ""
|
||
|
chat_history_id = add_chat_history_to_db(chat_type="llm_chat", query=query)
|
||
|
|
||
|
if stream:
|
||
|
async for token in callback.aiter():
|
||
|
answer += token
|
||
|
# Use server-sent-events to stream the response
|
||
|
yield json.dumps(
|
||
|
{"text": token, "chat_history_id": chat_history_id},
|
||
|
ensure_ascii=False)
|
||
|
else:
|
||
|
async for token in callback.aiter():
|
||
|
answer += token
|
||
|
yield json.dumps(
|
||
|
{"text": answer, "chat_history_id": chat_history_id},
|
||
|
ensure_ascii=False)
|
||
|
|
||
|
if SAVE_CHAT_HISTORY and len(chat_history_id) > 0:
|
||
|
# 后续可以加入一些其他信息,比如真实的prompt等
|
||
|
update_chat_history(chat_history_id, response=answer)
|
||
|
await task
|
||
|
|
||
|
return StreamingResponse(chat_iterator(query=query,
|
||
|
history=history,
|
||
|
model_name=model_name,
|
||
|
prompt_name=prompt_name),
|
||
|
media_type="text/event-stream")
|