You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

282 lines
12 KiB

1 month ago
from module_admin.entity.vo.user_vo import *
from module_admin.entity.vo.vecset_vo import *
from module_admin.entity.vo.dasset_vo import *
from module_admin.dao.vecset_dao import *
from module_admin.dao.dasset_dao import *
from utils.pwd_util import *
from utils.common_util import *
class VecsetService:
"""
智能语句配置模块服务层
"""
@classmethod
def get_vecset_list_services(cls, result_db: Session, query_object: VecsetQueryModel, data_scope_sql: str):
"""
获取智能语句配置信息service
:param result_db: orm对象
:param query_object: 查询参数对象
:param data_scope_sql: 数据权限对应的查询sql语句
:return: 字段列表信息对象
"""
vecset_list_result = VecsetDao.get_vecset_list(result_db, query_object, data_scope_sql)
#test_asset = SysDasset.get_dasset_detail_by_dname(result_db,dasset_name='资讯数据资产')
#print(test_asset,99999999)
return vecset_list_result
@classmethod
def add_vecset_services(cls, result_db: Session, page_object: AddVecsetModel):
"""
新增智能语句配置信息service
:param result_db: orm对象
:param page_object: 新增智能语句配置对象
:return: 新增字段校验结果
"""
add_vecset = VecsetModel(**page_object.dict())
vecset = VecsetDao.get_vecset_by_info(result_db, VecsetModel(**dict(stab_name=page_object.stab_name)))
if vecset:
result = dict(is_success=False, message='字段名已存在')
else:
try:
add_result = VecsetDao.add_vecset_dao(result_db, add_vecset)
onum = add_result.onum
result_db.commit()
result = dict(is_success=True, message='新增成功')
except Exception as e:
result_db.rollback()
result = dict(is_success=False, message=str(e))
return CrudVecsetResponse(**result)
@classmethod
def edit_vecset_services(cls, result_db: Session, page_object: AddVecsetModel):
"""
编辑智能语句配置信息service
:param result_db: orm对象
:param page_object: 编辑智能语句配置对象
:return: 编辑智能语句配置校验结果
"""
edit_vecset = page_object.dict(exclude_unset=True)
if page_object.type == 'status' or page_object.type == 'avatar':
del edit_vecset['type']
vecset_info = cls.detail_vecset_services(result_db, edit_vecset.get('onum'))
if vecset_info:
if page_object.type != 'status' and page_object.type != 'avatar' and vecset_info.vecset.stab_name != page_object.stab_name:
vecset = VecsetDao.get_vecset_by_info(result_db, VecsetModel(**dict(stab_name=page_object.stab_name)))
if vecset:
result = dict(is_success=False, message='字段名已存在')
return CrudVecsetResponse(**result)
try:
VecsetDao.edit_vecset_dao(result_db, edit_vecset)
if page_object.type != 'status' and page_object.type != 'avatar':
onum_dict = dict(onum=page_object.onum)
result_db.commit()
result = dict(is_success=True, message='更新成功')
except Exception as e:
result_db.rollback()
result = dict(is_success=False, message=str(e))
else:
result = dict(is_success=False, message='字段不存在')
return CrudVecsetResponse(**result)
@classmethod
def delete_vecset_services(cls, result_db: Session, page_object: DeleteVecsetModel):
"""
删除智能语句配置信息service
:param result_db: orm对象
:param page_object: 删除智能语句配置对象
:return: 删除智能语句配置校验结果
"""
if page_object.onums.split(','):
onum_list = page_object.onums.split(',')
try:
for onum in onum_list:
onum_dict = dict(onum=onum, update_by=page_object.update_by, update_time=page_object.update_time) #
VecsetDao.delete_vecset_dao(result_db, VecsetModel(**onum_dict))
result_db.commit()
result = dict(is_success=True, message='删除成功')
except Exception as e:
result_db.rollback()
result = dict(is_success=False, message=str(e))
else:
result = dict(is_success=False, message='传入智能语句配置id为空')
return CrudVecsetResponse(**result)
@classmethod
def detail_vecset_services(cls, result_db: Session, onum: int):
"""
获取智能语句配置详细信息service
:param result_db: orm对象
:param onum: 智能语句配置id
:return: 智能语句配置id对应的信息
"""
vecset = VecsetDao.get_vecset_detail_by_id(result_db, onum=onum)
return VecsetDetailModel(
vecset=vecset.vecset_basic_info,
dasset=vecset.vecset_dasset_info
)
@staticmethod
def export_vecset_list_services(vecset_list: List):
"""
导出配置表信息service
:param vecset_list: 代码信息列表
:return: 配置表信息对应excel的二进制数据
"""
# 创建一个映射代码,将英文键映射到中文键
mapping_dict = {
"dasset_id": "数据域名",
"onum": "序号",
"stab_name": "表名称",
"squery": "查询语句",
"sanal_plan": "分析方法",
"sintnt_term": "意图词",
"ssql": "参考sql",
"sim_thrsh": "相似阈值",
"status": "状态",
# "create_by": "创建者",
# "create_time": "创建时间",
# "update_by": "更新者",
# "update_time": "更新时间",
}
#data = [VecsetModel(**vars(row)).dict() for row in vecset_list]
data = [VecsetModel(**row).dict() for row in vecset_list]
for item in data:
if item.get('status') == '0':
item['status'] = '正常'
else:
item['status'] = '停用'
if item.get('dasset_id') == 101:
item['dasset_id'] = '资讯域'
elif item.get('dasset_id') == 102:
item['dasset_id'] = '财务域'
elif item.get('dasset_id') == 145:
item['dasset_id'] = '账户域'
else:
item['dasset_id'] == '其他域'
new_data = [{mapping_dict.get(key): value for key, value in item.items() if mapping_dict.get(key)} for item in data]
binary_data = export_list2excel(new_data)
return binary_data
@classmethod
def batch_import_vecset_services(cls, result_db: Session, vecset_import: ImportVecsetModel, current_user: CurrentUserInfoServiceResponse):
"""
批量导入智能语句配置表service
:param vecset_import: 智能语句配置表导入参数对象
:param result_db: orm对象
:param current_vecset: 当前智能语句配置表对象
:return: 批量导入智能语句配置表结果
"""
header_dict = {
"数据域名": "dasset_id",
#"序号": "onum",
"表名称": "stab_name",
"查询语句": "squery",
"分析方法": "sanal_plan",
"意图词": "sintnt_term",
"参考sql": "ssql",
"相似阈值": "sim_thrsh",
"状态": "status"
}
filepath = get_filepath_from_url(vecset_import.url)
df = pd.read_excel(filepath)
df.rename(columns=header_dict, inplace=True)
add_error_result = []
count = 0
# VecsetDao.get_vecset_by_info(result_db, VecsetModel(**dict(stab_name=page_object.stab_name)))
try:
for index, row in df.iterrows():
count = count + 1
if row['dasset_id'] == '资讯域':
row['dasset_id'] = '101'
if row['dasset_id'] == '财务域':
row['dasset_id'] = '102'
if row['dasset_id'] == '其他域':
row['dasset_id'] = '121'
if row['status'] == '正常':
row['status'] = '0'
if row['status'] == '停用':
row['status'] = '1'
add_vecset = VecsetModel(
**dict(
dasset_id=row['dasset_id'],
#onum=row['onum'],
stab_name = str(row['stab_name']).replace('nan', ''),
squery = str(row['squery']).replace('nan', ''),
sanal_plan = str(row['sanal_plan']).replace('nan', ''),
sintnt_term = str(row['sintnt_term']).replace('nan', ''),
ssql = str(row['ssql']).replace('nan', ''),
sim_thrsh = str(row['sim_thrsh']).replace('nan', ''),
status=row['status'],
create_by=current_user.user.user_name,
update_by=current_user.user.user_name,
)
)
vecset_info = VecsetDao.get_vecset_by_info_imp(result_db, VecsetModel(**dict(squery=row['squery'])))
if vecset_info:
if vecset_import.is_update:
edit_vecset = VecsetModel(
**dict(
dasset_id=row['dasset_id'],
#onum=row['onum'],
stab_name = str(row['stab_name']).replace('nan', ''),
squery = str(row['squery']).replace('nan', ''),
sanal_plan = str(row['sanal_plan']).replace('nan', ''),
sintnt_term = str(row['sintnt_term']).replace('nan', ''),
ssql = str(row['ssql']).replace('nan', ''),
sim_thrsh = str(row['sim_thrsh']).replace('nan', ''),
status=row['status'],
update_by=current_user.user.user_name
)
).dict(exclude_unset=True)
VecsetDao.edit_vecset_dao(result_db, edit_vecset)
else:
add_error_result.append(f"{count}.用户账号{row['user_name']}已存在")
else:
VecsetDao.add_vecset_dao(result_db, add_vecset)
result_db.commit()
result = dict(is_success=True, message='\n'.join(add_error_result))
except Exception as e:
result_db.rollback()
result = dict(is_success=False, message=str(e))
return CrudVecsetResponse(**result)
@staticmethod
def get_vecset_import_template_services():
"""
获取智能语句配置表导入模板service
:return: 智能语句配置表导入模板excel的二进制数据
"""
#header_list = ["数据域名", "序号", "查询语句", "分析方法", "意图词", "表名称", "参考sql", "相似阈值", "状态"]
header_list = ["数据域名","表名称", "查询语句", "分析方法", "意图词", "参考sql", "相似阈值", "状态"]
selector_header_list = ["数据域名","状态"]
option_list = [{"数据域名": ["资讯域", "财务域", "账户域", "其他域"]},{"状态": ["正常", "停用"]}]
binary_data = get_excel_template(header_list=header_list, selector_header_list=selector_header_list, option_list=option_list)
return binary_data